32,355 research outputs found

    Supernova Blastwaves in Low-density Hot Media: a Mechanism for Spatially Distributed Heating

    Get PDF
    Most supernovae are expected to explode in low-density hot media, particularly in galactic bulges and elliptical galaxies. The remnants of such supernovae, though difficult to detect individually, can be profoundly important in heating the media on large scales. We characterize the evolution of this kind of supernova remnants, based on analytical approximations and hydrodynamic simulations. We generalize the standard Sedov solution to account for both temperature and density effects of the ambient media. Although cooling can be neglected, the expansion of such a remnant deviates quickly from the standard Sedov solution and asymptotically approaches the ambient sound speed as the swept-up thermal energy becomes important. The relatively steady and fast expansion of the remnants over large volumes provides an ideal mechanism for spatially distributed heating, which may help to alleviate the over-cooling problem of hot gas in groups and clusters of galaxies as well as in galaxies themselves. The simulations were performed with the FLASH code.Comment: 12 pages, 3 figures, 1 table, accepted for ApJ, uses aaste

    A long-lived spin-orbit-coupled degenerate dipolar Fermi gas

    Full text link
    We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit-coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states comprised of optically coupled components of an atomic spin. Because of dysprosium's large electronic orbital angular momentum and large magnetic moment, the lifetime of the gas is limited not by spontaneous emission from the light-matter coupling, as for gases of alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is suppressed at large magnetic fields due to Fermi statistics. We observe lifetimes up to 400 ms, which exceeds that of spin-orbit-coupled fermionic alkali atoms by a factor of 10-100, and is close to the value obtained from a theoretical model. Elastic dipolar interactions are also observed to influence the Rabi evolution of the spin, revealing an interacting fermionic system. The long lifetime of this weakly interacting spin-orbit-coupled degenerate Fermi gas will facilitate the study of quantum many-body phenomena manifest at longer timescales, with exciting implications for the exploration of exotic topological quantum liquids.Comment: 11 pages, 8 figures, one appendi

    Scalability of Hydrodynamic Simulations

    Get PDF
    Many hydrodynamic processes can be studied in a way that is scalable over a vastly relevant physical parameter space. We systematically examine this scalability, which has so far only briefly discussed in astrophysical literature. We show how the scalability is limited by various constraints imposed by physical processes and initial conditions. Using supernova remnants in different environments and evolutionary phases as application examples, we demonstrate the use of the scaling as a powerful tool to explore the interdependence among relevant parameters, based on a minimum set of simulations. In particular, we devise a scaling scheme that can be used to adaptively generate numerous seed remnants and plant them into 3D hydrodynamic simulations of the supernova-dominated interstellar medium.Comment: 12 pages, 1 figure, submitted to MNRAS; comments are welcom

    A unified approach to generate risk measures.

    Get PDF
    Markov inequality; Premium; Premium principle; Principles; Probability; Recall; Risk; Risk measure;
    corecore